Iterative Refinement for Ill-conditioned Linear Equations.

Shin’ichi Oishi1,4, Takeshi Ogita2,4 and Siegfried M. Rump3,1

1Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
2 Department of Mathematics, College of Arts and Sciences, Tokyo Woman’s Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
3 Institute for Reliable Computing, Hamburg University of Technology
4 CRESTM, JST, Japan

Abstract—This paper treats a linear equation

$$Av = b,$$

where $A \in \mathbb{F}^{n \times n}$ and $b \in \mathbb{F}^n$. Here, F is a set of floating point numbers. Let u be the unit round-off of the working precision and $\kappa(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}$ be the condition number of the problem. Here, ill-conditioned problems with

$$1 < \kappa(A) < \infty$$

are considered and an iterative refinement algorithm for the problems is proposed. In this paper, the forward and backward stability will be shown for this iterative refinement algorithm.

1. Introduction

In this paper, we will consider the convergence of an iterative refinement for a linear equation

$$Av = b,$$ \hspace{1cm} \text{(1)}

where $A \in \mathbb{F}^{n \times n}$ and $b \in \mathbb{F}^n$. Here, F is a set of floating point numbers. Let u be the unit round-off of the working precision and $\kappa(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}$ be the condition number of the problem. Here, $\| \cdot \|_{\infty}$ is the maximum norm defined by

$$\|v\|_{\infty} = \max_{1 \leq i \leq n} |v_i|, \text{ for } v = (v_1, v_2, \cdots, v_n)^T \in \mathbb{R}^n$$

and

$$\|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |A_{ij}| \text{ for } A = (A_{ij}) \in \mathbb{R}^{n \times n}. \hspace{1cm} \text{(2)}$$

The superscript T denotes the transpose and \mathbb{R} is the set of real numbers. For well posed problems, i.e., in case of $\kappa(A) < 1$, it has been shown [1]-[5] that the iterative refinement improves the forward and backward errors of computed solutions provided that the residuals are evaluated by extended precision, in which the unit round off \overline{u} is, for example, the order of u^2, before rounding back to the working precision. In this paper, we will treat ill-conditioned problems with

$$1 < u \kappa(A) < \infty.$$ \hspace{1cm} \text{(4)}

We can assume without loss of generality that for a certain positive integer k the following is satisfied:

$$u^k \kappa(A) \leq \beta < 1.$$ \hspace{1cm} \text{(5)}

In Ref. [8], Rump has shown that for arbitrary ill-conditioned matrices A, we can have good approximate inverses $R_{1,k}$ satisfying $\|R_{1,k}A - I\|_{\infty} \leq \alpha < 1$. Here, $R_{1,k}$ is obtained as

$$R_{1,k} = R_1 + R_2 + \cdots + R_k$$

with $R_i \in \mathbb{F}^{n \times n}$ and I is the n-dimensional unit matrix. In Ref. [6], we have partially clarified the mechanism of the convergence of Rump’s method.

Let $A, B, C \in \mathbb{F}^{n \times n}$. We assume that we have an accurate matrix product calculation algorithm $[AB - C]_k$ such that

$$D_{1,k} = [AB - C]_k$$

satisfying

$$\left\| \sum_{i=1}^{k} D_i - (AB - C) \right\|_{\infty} \leq cu^k \|AB - C\|_{\infty}.$$ \hspace{1cm} \text{(8)}

Here, $D_{1,k}$ is defined as

$$D_{1,k} = D_1 + D_2 + \cdots + D_k$$

with $D_i \in \mathbb{F}^{n \times n}$. Such algorithms have been proposed by the present authors with $c < 2.1$ (See [7], [9] and [10]).
Now we propose the following iterative refinement algorithm:
\[v' = [v - R_1 k [Av - b]]_1. \] (10)
Put \(r_k = [Av - b]_k \) and let \(\Phi(v) = [v - R_1 k r_k]_1. \) Then, we can write
\[v' = \Phi(v). \] (11)
The following holds:
\[v' = v - R_1 k [(Av - b) + e_r] + e_m, \] (12)
where \(e_r = r_k - (Av - b) \) and \(e_m \in \mathbb{R}^n \) satisfying
\[\|e_r\|_\infty \leq cu^k \|Av - b\|_\infty \] (13)
and
\[\|e_m\|_\infty \leq cu \|v - R_1 k r_k\|_\infty. \] (14)

In this paper, we will show the forward and backward stability of the iterative algorithm (10). Furthermore, numerical examples are also given for illustrating the forward and backward stability of the iterative refinement algorithm (10). The forward stability of the algorithm guarantees that approximate solutions generated by the algorithm converge, while the backward stability means the stability of the algorithm against the rounding errors.

2. Convergence Theorem: Forward Stability

Let us consider
\[Av = b, \] (15)
where \(A \in \mathbb{F}^{n \times n} \) and \(b \in \mathbb{F}^n. \) Let
\[1 < u_\mathbb{F}(A) < \infty. \] (16)
We assume that we have a good approximate inverses \(R_{1,k} \) satisfying
\[\|R_{1,k} A - I\|_\infty \leq \alpha < 1. \] (17)
Here, \(R_{1,k} \) is defined as
\[R_{1,k} = R_1 + R_2 + \cdots + R_k \] (18)
with \(R_i \in \mathbb{F}^{n \times n}. \) As mentioned in the previous section in Ref.[8], Rump has proposed a method of calculating such approximate inverses and in Ref.[6], we have partially clarified the mechanism of the convergence of Rump’s method. Further, we assume also that the following is satisfied:
\[u^k \kappa(A) \leq \beta < 1. \] (19)
We propose the following iterative refinement algorithm:
\[v_n = \Phi(v_{n-1}), \quad \Phi(v) = [v - R_{1,k}r_k]_1, \]
\[r_k = [Av - b]_k \quad (n = 1, 2, \cdots) \] (20)
with any starting vector \(v_0 \in \mathbb{F}^n. \) The aim of this section is to show the following theorem:

Theorem 1 Let \(v_n \) be generated from (20) with any starting vector \(v_0 \in \mathbb{F}^n. \) We assume the assumptions (17) and (19). If
\[\gamma = (\alpha + c\beta + \alpha\beta)(1 + cu) < 1, \] (21)
the relative forward error \(\|v_n - v^*\|_\infty /\|v^*\|_\infty \) reduces until
\[\frac{\|v_n - v^*\|_\infty}{\|v^*\|_\infty} \approx u + cu \cdot \gamma. \] (22)
Here, for real numbers \(a \) and \(b, \) \(a \approx b \) means that \(a \) is approximately equal to \(b. \)
This implies the forward stability of the iterative refinement algorithm (20).

3. Backward Stability

In this section, we will show the backward stability of the iterative refinement algorithm (20).

A normwise backward error of an approximation \(v \) is defined by
\[\eta(v) = \min \{ \varepsilon : (A + \Delta A)v = b + \Delta b, \]
\[\|\Delta A\|_\infty \leq \varepsilon \|A\|_\infty, \]
\[\|\Delta b\|_\infty \leq \varepsilon \|b\|_\infty \}. \] (23)
It is known [13] that
\[\eta(v) = \frac{\|r\|_\infty}{\|A\|_\infty \|v\|_\infty + \|b\|_\infty}. \] (24)
Here, \(r = Av - b. \)
The next theorem shows the backward stability of the iterative refinement algorithm (20):

Theorem 2 Let \(v_n \) be generated from (20) with any starting vector \(v_0 \in \mathbb{F}^n. \) We assume the assumptions (17) and (19). If
\[\gamma = (\alpha + c\beta + \alpha\beta)(1 + cu) < 1, \] (25)
the backward error \(\eta(v) \) reduces until
\[\eta(v) \leq c_2 u, \] (26)
where \(c_2 \) is a certain constant. Here, for real numbers \(a \) and \(b, \) \(a \leq b \) means that \(a \) is approximately equal to \(b \) or \(a \) is less than \(b. \)
This implies the backward stability of the iterative refinement algorithm (20).

4. Numerical Examples Illustrating Forward and Backward Stability

In this section, we will present numerical examples illustrating the forward and the backward stability of the iterative refinement algorithm (20).
We have used the IEEE 754 double precision floating point number system in these numerical calculations. Thus, in the following calculations, the unit round-off \(u \) is given as
\[1.11 \times 10^{-16} < u = 2^{-53} < 1.12 \times 10^{-16}. \] (27)
4.1. Hilbert Matrix

Let \(H \) be the \(n \times n \) Hilbert matrix. Let further \(A = sH \). Here, \(s \) is the minimum common multiplier of \(1, 2, 3, \ldots , n - 1 \). Furthermore,

\[
b = Az,
\]

where, \(z \in \mathbb{F}^n \) and \(z_i = 1 \). We have solved \(Ax = b \) for \(n = 20 \). In this example, \(1.92 \times 10^{16} < \| A \|_\infty < 1.93 \times 10^{16}, 1.92 \times 10^{16} < \| b \|_\infty < 1.93 \times 10^{16} \) and \(2.44 \times 10^{28} < \kappa(A) < 2.45 \times 10^{28} \).

In this case, a good approximate inverse can be constructed with \(k = 2 \) such that

\[
\| RA - I \|_\infty < \alpha = 4.16 \times 10^{-4},
\]

where

\[
R = R_1 + R_2
\]

with suitable \(R_1, R_2 \in \mathbb{F} \). The iterative refinement algorithm (20) converges with 3 iterations. Finally, we have an approximate solution with the relative maximum error about \(1.92 \times 10^{-16} \). Furthermore, it is seen that

\[
\beta = u^8 \kappa(A) < (1.2 \times 10^{-16})^2 \times 2.45 \times 10^{28} < 3.08 \times 10^{-4}.
\]

Table 1 shows the relative errors \(\| v^* - v_i \|_\infty / \| v^* \|_\infty \) and the backward errors \(\eta(v_i) \) of approximate solutions obtained by the iterative refinement calculations (20). These calculations are done by MATLAB on Intel core 2 duo CPU.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(| v^* - v_i |\infty / | v^* |\infty)</th>
<th>(\eta(v_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(3.50 \times 10^{-1})</td>
<td>(4.55 \times 10^{-6})</td>
</tr>
<tr>
<td>1</td>
<td>(4.03 \times 10^{-9})</td>
<td>(4.12 \times 10^{-11})</td>
</tr>
<tr>
<td>2</td>
<td>(5.10 \times 10^{-14})</td>
<td>(5.04 \times 10^{-16})</td>
</tr>
<tr>
<td>3</td>
<td>(1.91 \times 10^{-16})</td>
<td>(1.77 \times 10^{-18})</td>
</tr>
<tr>
<td>4</td>
<td>(1.91 \times 10^{-16})</td>
<td>(1.77 \times 10^{-18})</td>
</tr>
</tbody>
</table>

Moreover, it is seen that

\[
\beta = u^8 \kappa(A) < (1.12 \times 10^{-16})^8 \times 1.75 \times 10^{107} < 4.34 \times 10^{-21}.
\]

Table 3 shows the relative errors and the backward errors of approximate solutions obtained by the iterative refinement calculations (20). The calculations are done by the same computational environment as that for the previous example.

4.3. Rump’s Matrix (n=300)

Let \(A \) be \(n \times n \) matrix generated by Rump’s algorithm [12]. We choose \(n = 300 \) and \(b = (1, 1, \ldots , 1)^T \in \mathbb{F}^n \). In this example, \(3.10 \times 10^8 < \| A \|_\infty < 3.11 \times 10^8, \| b \|_\infty = 1 \) and \(6.28 \times 10^{59} < \kappa(A) < 6.29 \times 10^{59} \).

In this case, a good approximate inverse can be constructed with \(k = 5 \) such that

\[
\| RA - I \|_\infty < \alpha = 1.16 \times 10^{-9},
\]

where

\[
R = R_1 + R_2 + \cdots + R_8
\]

with suitable \(R_1, R_2, \ldots , R_8 \in \mathbb{F} \). The iterative refinement algorithm converges (20) with 1 iteration. Moreover, it is seen that

\[
\beta = u^8 \kappa(A) < (1.12 \times 10^{-16})^8 \times 6.29 \times 10^{59} < 1.11 \times 10^{-20}.
\]

Table 3 shows the relative errors and the backward errors of approximate solutions obtained by the iterative refinement calculations (20). The calculations are done by the same computational environment as that for the previous example.

Table 2: Rump’s matrix (n=100)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(| v^* - v_i |\infty / | v^* |\infty)</th>
<th>(\eta(v_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(7.51 \times 10^{-6})</td>
<td>(3.98 \times 10^{-14})</td>
</tr>
<tr>
<td>1</td>
<td>(5.98 \times 10^{-11})</td>
<td>(5.61 \times 10^{-15})</td>
</tr>
<tr>
<td>2</td>
<td>(4.88 \times 10^{-16})</td>
<td>(2.46 \times 10^{-19})</td>
</tr>
<tr>
<td>3</td>
<td>(3.18 \times 10^{-19})</td>
<td>(6.58 \times 10^{-19})</td>
</tr>
<tr>
<td>4</td>
<td>(3.18 \times 10^{-19})</td>
<td>(6.58 \times 10^{-19})</td>
</tr>
</tbody>
</table>
Table 3: Rump’s matrix (n=300)

<table>
<thead>
<tr>
<th>i</th>
<th>$|v^* - v_i|\infty / |v^*|\infty$</th>
<th>$\varphi(v_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.02×10^{-12}</td>
<td>1.42×10^{-11}</td>
</tr>
<tr>
<td>1</td>
<td>8.10×10^{-23}</td>
<td>4.07×10^{-19}</td>
</tr>
<tr>
<td>2</td>
<td>8.10×10^{-23}</td>
<td>4.07×10^{-19}</td>
</tr>
</tbody>
</table>

References

