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1 Introduction

In this paper, we propose a semi-static floating-point filter for computational geom-
etry. We focus on a two-dimensional orientation problem which is one of the ba-
sic problems in computational geometry. Suppose that an oriented line and a point
C = (cx,cy) in the two-dimensional Euclidean space are given. The oriented line
passes from a pointA = (ax,ay) to a pointB = (bx,by) for A ̸= B. The aim is to
judge whether the pointC is located on the left or the right of the oriented line, or on
the line. This problem can be boiled down to determining the sign of a 3-by-3 matrix
determinant as follows:

sign(det(G)), G :=

ax ay 1
bx by 1
cx cy 1

 . (1.1)

If the sign of the determinant is positive / negative, then the point is left / right of the
oriented line. If the sign is zero, then the point is on the line. Fig. 1.1 visualizes this
problem.
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Fig. 1.1 two-dimensional orientation problem.

Solving this orientation problem is necessary for solving the following other prob-
lems1:

– convex hull problem: Determine a minimum convex set enclosing a given finite
set of points.

– point-in-polygon problem: Decide whether a given point in the plane lies inside,
outside, or on the boundary of a polygon.

– segment intersection problem: Decide whether two given line segments cross
each other or not.

If all coordinates are represented by floating-point numbers and if the determinant (1.1)
is evaluated by floating-point arithmetic, then an incorrect sign may be obtained due
to accumulation of rounding errors. If the point is very close to the oriented line,
then an incorrect sign might be obtained in the worst case. Once the incorrect sign

1 There are further related crucial problems in computational geometry which require to determine
signs of determinants of larger matrices than in (1.1). For example, the point-in-circle problem: ”Decide
whether a point in the plane lies inside or outside or on the boundary of a circle.” leads to a 4-by-4 matrix.
Such problems are not considered in this paper even though we believe that our techniques can be adapted
but calculations will certainly become much more involved.
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is computed, algorithms for computational geometry have prospects of producing an
inexact result. Taking the convex hull problem for example, the computed result may
not become a convex set, or some of the given points may not be enclosed. In the
worst case algorithms may enter an infinite loop. Such problems are called ‘robust-
ness problems’. Plentiful topics of robustness problems in computational geometry
are introduced in [5]. A reliable package for overcoming such problems was released
in [14].

If we use multi-precision arithmetic with sufficient precision or symbolic compu-
tations, it is possible to obtain the correct sign of the determinant (1.1). However, the
following problems arise:

– Basically, it is rare to handle ill-conditioned problems. Namely, many problems
are exactly solved by floating-point arithmetic. However, once a result is incor-
rect, an algorithm may finally produce a meaningless result.

– The cost for using multi-precision arithmetic or symbolic computations is very
expensive. It is desired to obtain the correct result by an arithmetic with minimum
precision. However, we cannot know in advance how many bits the algorithm
requires in order to produce the correct result.

To overcome these problems, it is preferred that so-called ‘floating-point filters’ are
applied first. Such a filter quickly checks whether a sufficient condition for the cor-
rectness of the sign of the determinant is satisfied or not. Therefore, the filter answers
‘the sign of the computed result is correct’ or ‘the correctness of the computed result
is unknown’. If the filter cannot guarantee correctness of the computed sign, more
accurate algorithms can be applied. Therefore, it is possible to develop an ‘adaptive
algorithm’ which does as much work as possible to guarantee the sign of the deter-
minant. There are several kinds of filters, static filters [3], semi-static filters [12,3],
dynamic filters [12,2,8]. Rigorous rounding error analysis can quickly become a very
tedious task even for short and quite simple-looking arithmetic expressions like (1.1).
For that reason automatic generators of floating-point filters were developed in [7].
For implementation of geometric algorithms a generic C++ design to perform exact
geometric computations was developed in [9]. In this paper, we do not treat integer
data but floating-point data, so that we will discuss a floating-point filter.

The article is organized as follows: In Section 2, we briefly review earlier works
on semi-static floating-point filters, namely Shewchuk’s work and Melquiond-Pion’s
work. When floating-point exceptions like overflow or underflow occur, some known
filters cannot work correctly, or, additional costs arise in order to handle such ex-
ceptions appropriately. In Section 3, we develop improved filters and explain their
properties. As a result, even if overflow or underflow occur, our filters work correctly
with only one single branch. In the final section, we discuss a static filter which pro-
duces smaller error bounds, compared to well-known approaches.

2 Notation and Filters for the Two-Dimensional Orientation Problem

In this section we introduce the notation and earlier works on floating-point filters.
We assume that all coordinates are represented by floating-point numbers defined by
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IEEE 754-2008 [1]. LetF be the set of binary32 or binary64 floating-point numbers
and letfl(·) denote that each operation in the parenthesis is evaluated by pure floating-
point arithmetic with rounding to nearest ties to even. Letu be the roundoff unit:
u = 2−24 for binary32 andu = 2−53 for binary64. LetuN be the smallest positive
normalized floating-point number, for example,uN = 2−1022 for binary64. LetuS be
the smallest positive floating-point number, for example,uS = 2−1074 for binary64
which is a subnormal number.

2.1 Shewchuk’s Filter

We introduce the filter coded in [13]. In specifications of algorithms,+,−,∗ are eval-
uated by floating-point arithmetic.

Algorithm 1 Let A= (ax,ay), B = (bx,by) and C= (cx,cy) be three points in the
two-dimensional space with floating-point coordinates. Suppose that an oriented line
passes from A to B. The following algorithm outputs a sign of the determinant (1.1) by
floating-point arithmetic. If the result is positive (negative), the point C is left (right)
of the oriented line.

functiondet= Sfilter(ax,ay,bx,by,cx,cy)
detle f t= (ax−cx)∗ (by−cy);
detright= (ay−cy)∗ (bx−cx);
det= detle f t−detright;
if (detle f t> 0.0)
if (detright<= 0.0)
return det;

else

detsum= detle f t+detright;
end

else if (detle f t< 0.0)
if (detright>= 0.0)
return det;

else

detsum=−detle f t−detright;
end

else

return det;
end

errbound= (3∗u+16∗u∗u)∗detsum;
if ((det>= errbound) || (−det>= errbound))
return det;

end

% fall down to robust computations
end
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This algorithm returns the result with two or three branches. The key point is as
follows: The determinant (1.1) is approximated by

det := fl((ax−cx)(by−cy)− (ay−cy)(bx−cx)). (2.1)

The signs offl((ax−cx)(by−cy)) andfl((ay−cy)(bx−cx)) are correct, meaning that
they are equal to the signs of(ax− cx)(by− cy) and(ay− cy)(bx− cx), respectively,
except for the case that underflow occurs during the computation. Therefore, the filter
first checks the sign of the termsdetle f t := fl((ax − cx)(by − cy)) anddetright :=
fl((ay−cy)(bx−cx)). If the signs are opposite, then the correctness of the sign of (2.1)
is guaranteed. Otherwise, an a priori error bound of the determinant is computed:

errbound:= fl((3u+16u2)(|(ax−cx)(by−cy)|+ |(ay−cy)(bx−cx)|)). (2.2)

If |det| ≥ errboundis satisfied, then the computed sign of the determinant is correct.
Otherwise, the specific problem requires a more accurate evaluation. See [12] for the
derivation of (2.2) and for developing adaptive algorithms.

We state advantages and disadvantages for this filter: If the result is guaranteed by
the first check of the signs ofdetle f tanddetright in Algorithm 1, then the additional
costs for the verification are very cheap. If overflow occurs during the computation,
then the sign of the determinant can only sometimes be guaranteed, for example,
in case ofdetle f t= ±Inf and detright= ∓Inf. If detle f t becomes 0 because of
underflow, then this filter guarantees the sign of the computed result. However, this
result is incorrect for the following example represented in binary64:

(ax,ay) := (2−702,2−701), (bx,by) := (2−700,2−700), (cx,cy) := (2−699,2−700).

We obtaindetle f t= 0 anddet= 0 due to occurrence of underflow, so that the algo-
rithm gives that the result is 0. However, the true determinant is 2−1401.

2.2 Melquiond and Pion’s Filter

We introduce the floating-point filter by Melquiond and Pion [6]2. First, we write
down their algorithm as follows:

Algorithm 2 Let A= (ax,ay), B = (bx,by) and C= (cx,cy) be three points in the
two-dimensional space. All coordinates are represented in binary64. Suppose that
an oriented line passes from A to B. The following algorithm outputs a sign of the
determinant (1.1) by floating-point arithmetic. If the result is positive (negative), the

2 We introduce the algorithm given in [6]. The main purpose of the paper by Melquiond and Pion is to
develop an automatic constructor of the floating-point filter. Therefore, their approach can be applied not
only to the two dimensional orientation problem but also to other problems in computational geometry.
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point C is left (right) of the oriented line.

functiondet= MPfilter(ax,ay,bx,by,cx,cy)
pqx= bx−ax;
pqy= by−ay;
prx= cx−ax;
pry= cy−ay;
maxx= max(abs(pqx),abs(prx));
maxy= max(abs(pqy),abs(pry));
eps= 8.8872057372592758e−16∗maxx∗maxy;
if (maxx> maxy) swap(maxx,maxy);
if (maxx< 1e−146)
if (maxx== 0)

det= 0;
return det;

end

else if (maxy< 1e153)
det= pqx∗ pry− pqy∗ prx;
if (det> eps) return det;
if (det<−eps) return det;

end

% fall back to a more precise, slower method
end

If heavy cancellation occurs, the filter requires four branches.
This algorithm checks the possibility of an occurrence of underflow or overflow

in turn. If the potential for a floating-point exception is found, then the algorithm
uses more robust computations in order to prevent overflow and underflow. Next,
the algorithm checks whether heavy cancellation occurs or not (see Figure 2.1 to
understand the flow of the algorithm). Therefore, the filter rigorously works for all
floating-point data.

However, it is rare to find overflow or underflow in practice in the two-dimensional
orientation problem3. In addition, let us consider the following setting

(ax,ay) := (−1,−1), (bx,by) := (1,1), (cx,cy) := (2700,1).

For this example, the filter says that a robust algorithm is necessary becausemaxy=
2700> 10153. However, overflow does not occur in the evaluation of the determinant
and this problem is not ill-conditioned. Namely, the floating-point result is correct.
Next, consider

(ax,ay) := (1,2−600), (bx,by) := (2−600,2−600), (cx,cy) := (0,0).

The filter fails to verify correctness due tomaxx= 2−600 < 1e− 146 although the
correct sign is obtained by floating-point arithmetic.

3 Since there are products of only two floating-point numbers in the evaluation of (1.1), overflow and
underflow rarely occur. However, if we handle the InSphere problem which aims to judge whether a point
is inside or outside a sphere in the three-dimensional space, then a product of five floating-point numbers
appears in the evaluation. Therefore, it is not so rare that floating-point exceptions occur in this problem.
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Fig. 2.1 Flow of the algorithm in the paper of Melquiond and Pion [6].

3 Proposed Semi-Static Filters

We will construct a floating-point filter based on (2.1). The evaluation of (2.1) re-
quires 7 floating-point operations:

t1 := ax−cx, x1 := fl(ax−cx),

t2 := by−cy, x2 := fl(by−cy),

t3 := ay−cy, x3 := fl(ay−cy),

t4 := bx−cx, x4 := fl(bx−cx),

t5 := t1t2, x5 := fl(x1x2),

t6 := t3t4, x6 := fl(x3x4),

t7 := t5− t6, x7 := fl(x5−x6).

In the final line,t7 andx7 denote the true determinant and a floating-point approxi-
mate, respectively. We recall well-known error analysis for floating-point arithmetic.
Forx,y∈ F, the definition of the IEEE 754 standard yields

fl(x◦y) = (1+ ε)(x◦y), x◦y= (1+ ε)fl(x◦y), |ε| ≤ u, ◦ ∈ {+,−}. (3.1)

For a product,

xy= fl(xy)(1+ ε)+η , |ε| ≤ u, |η | ≤ 1
2

uS, εη = 0. (3.2)

In [10], Rump introduced new models for the error of floating-point arithmetic:

fl(x◦y) = x◦y+δ , |δ | ≤ u ·ufp(x◦y)≤ u ·ufp(fl(x◦y)), ◦ ∈ {+,−} (3.3)
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and

xy= fl(xy)+δ +η , |δ | ≤ u ·ufp(xy)≤ u ·ufp(fl(xy)), |η | ≤ 1
2

uS, δη = 0

(3.4)
where

ufp(a) :=

{
0, if a= 0,

2⌊log2 |a|⌋, else.

The relations (3.1), (3.2), (3.3) and (3.4) are only valid if no overflow occurs. In the
subsequent Theorems 3.1, 3.2, 3.3, 3.4 and in Lemma 3.1 we will therefore assume
that no overflow occurs inx1, . . . ,x7 andx8 := fl(|x5|+ |x6|).

Lemma 3.1 For a,b,c,d ∈ F,

|fl((a+b)(c+d))− (a+b)(c+d)| ≤ (3u− (φ −14)u2)fl(|(a+b)(c+d)|)+S

where

φ := 2

⌊
−1+

√
4u−1+45
4

⌋
, (3.5)

and

0≤ S<
1
2

uS+
3
2

u ·uS and S= 0 if |fl(a+b)fl(c+d)| ≥ uN.

In binary64,φ =94906264and the obtained constant is3u−94906250u2≈2.99999998u.

Proof.
If a+b= 0 orc+d= 0, then (3.5) trivially holds. Therefore, we can assume both

a+b ̸= 0 andc+d ̸= 0. From (3.3) and (3.4),

s1 := a+b, s̃1 := fl(a+b) = s1(1+ ε1), |ε1| ≤ u
ufp(s1)

|s1|
≤ u, (3.6)

s2 := c+d, s̃2 := fl(c+d) = s2(1+ ε2), |ε2| ≤ u
ufp(s2)

|s2|
≤ u, (3.7)

p= s̃1s̃2, p̃= fl(s̃1s̃2) = p(1+ ε3)+η ,

|ε3| ≤ u ufp(p)
|p| ≤ u, |η | ≤ 1

2uS, ε3η = 0.
(3.8)

Then,
p̃= s1s2(1+ ε1)(1+ ε2)(1+ ε3)+η =: s1s2(1+α)+η

and it derives
p̃−s1s2 = αs1s2+η =

α
1+α

(p̃−η)+η , (3.9)

where
|α| ≤ (1+ |ε1|)(1+ |ε2|)(1+ |ε3|)−1. (3.10)

We distinguish two cases. First, assume|si | ≥ (1+φu)ufp(si) for somei ∈ {1, 2}.

Then, from (3.6) and (3.7), at least one of|ε1| or |ε2| is smaller or equal to
u

1+φu
and we take an upper bound forα in (3.10)

|α| ≤ (1+
u

1+φu
)(1+u)2−1.
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Hence, fromφ ≤ 1+
√

4u−1+1
2

,

|α| ≤ (1+
u

1+φu
)(1+u)2−1≤ (1+(1− (φ −1)u)u)(1+u)2−1

= (1− (φ −1)u)(1+u)2u+2u+u2

= 3u+(4−φ)u2+(3−2φ)u3+(1−φ)u4 =: t.

Therefore,

| α
1+α

| ≤ |α|
1−|α|

≤ t
1− t

< 3u− (φ −13)u2. (3.11)

Finally, (3.9) and (3.11) yield

|p̃−s1s2|= | α
1+α

(p̃−η)+η | ≤ (3u− (φ −13)u2)|p̃|+S

where

0≤ S<
1
2

uS+
3
2

u ·uS andS= 0 if |p| ≥ uN.

It remains the second case that|s1|< (1+φu)ufp(s1) and|s2|< (1+φu)ufp(s2).
From (3.8),

|ε3|=
|p̃− s̃1s̃2−η |

|s̃1s̃2|
. (3.12)

From the assumption in the second case,

|s̃i |= (1+kiu)ufp(si) ∈ F, i = 1,2, 0≤ ki ≤ φ , ki is even.

We have

|s̃1s̃2| = (1+k1u)ufp(s1) · (1+k2u)ufp(s2)

= (1+(k1+k2)u+k1k2u2)ufp(s1)ufp(s2). (3.13)

If |p̃| ≥ uN, thenp̃= (1+(k1+k2)u)ufp(s1)ufp(s2), so that fromφ2 < u−1,

|p̃− s̃1s̃2|= k1k2u2ufp(s1)ufp(s2), (3.14)

and we can setη = 0 in (3.12). Then, by substituting (3.13) and (3.14) to (3.12),

|ε3|=
k1k2u2

1+(k1+k2)u+k1k2u2 ≤ φ2u2.

If |p̃|< uN, then we can setε3 = 0 in (3.10). Therefore, in any case,

|α | ≤ (1+u)2(1+φ2u2)−1< 2u+(3+φ2)u2 = 3u− (u−1−3−φ2)u2.

Since−(u−1−3−φ2)u2 < (4−φ)u2+(3−2φ)u3+(1−φ)u4, we derive (3.5) in
the same way as in the case of|si | ≥ (1+φu)ufp(si) for somei. □
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Remark 3.1We do not claim that the constant(3u− (φ −14)u2) in (3.5) is optimal.
However, ifa= c= 1 andb= d = 94906265u in binary64, then

|fl((a+b)(c+d))− (a+b)(c+d)|= (2.999999923..)fl(|(a+b)(c+d)|).

Therefore, the constant cannot be that far from being optimal.

Theorem 3.1 If
x7 = fl(x5−x6) = x5−x6, (3.15)

which means that no rounding error occurs in fl(x5−x6), then a sufficient condition
for the correctness of the sign of x7 is

|x7| ≥ fl(θx8)+(1.5+3u)uS (3.16)

whereθ := 3u− (φ −22)u2 ∈ F andφ is defined by (3.5).

Proof.
From Lemma 3.1,

t5 = x5+δ5+η5, |δ5| ≤ (3u− (φ −14)u2)|x5|, |η5|<
1
2

uS+
3
2

u ·uS. (3.17)

Similarly, we have

t6 = x6+δ6+η6, |δ6| ≤ (3u− (φ −14)u2)|x6|, |η6|<
1
2

uS+
3
2

u ·uS. (3.18)

From assumption (3.15), (3.17) and (3.18),

t7 = t5− t6 = x5+δ5+η5− (x6+δ6+η6) = x7+δ5+η5− (δ6+η6).

Therefore, if
|x7|> |δ5+η5− (δ6+η6)|, (3.19)

then the sign ofx7 is the same as that oft7. From (3.1),

|x5|+ |x6| ≤ (1+u)x8. (3.20)

From (3.20), we develop an upper bound of the right hand-side of (3.19):

|δ5+η5− (δ6+η6)|< (3u− (φ −14)u2)(|x5|+ |x6|)+uS+3u ·uS

≤ (3u− (φ −17)u2− (φ −14)u3)x8+uS+3u ·uS

= (1+u)−1(3u− (φ −20)u2− (2φ −31)u3− (φ −14)u4)x8+uS+3u ·uS=: U1.

In the above expression,

F ̸∋ 3u− (φ −20)u2− (2φ −31)u3− (φ −14)u4 < 3u− (φ −22)u2 = θ ∈ F.

Therefore, from (3.2)

U1 ≤ (1+u)−1θx8+uS+3u ·uS

≤ (1+u)−1(1+u)fl(θx8)+1.5uS+3u ·uS

= fl(θx8)+1.5uS+3u ·uS.
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Thus, (3.16) is obtained. □

In Theorem 3.1, we assumed (3.15). However, this assumption is not important
by the following theorem.

Theorem 3.2 If a rounding error occurs in fl(x5−x6) such that

x7 = fl(x5−x6) ̸= x5−x6, (3.21)

then the sign of x7 is the same as that of t7.

Proof.
If bothx5 andx6 are subnormal numbers, then no rounding error occurs infl(x5−x6).

Therefore, the assumption (3.21) implies that eitherx5 or x6 is a normalized floating-
point number, so that

max(|x5|, |x6|)≥ uN >
1
2

uN. (3.22)

From (3.3),

x5−x6 = fl(x5−x6)+δ , |δ | ≤ u ·ufp(x5−x6)≤ u ·ufp(fl(x5−x6)). (3.23)

Then, (3.19) is replaced by

|x7|> |δ5+η5− (δ6+η6)+δ |, (3.24)

and if

|x7| ≥ fl(θx8)+1.5uS+3u ·uS+u ·ufp(fl(x5−x6))

is satisfied, then the sign ofx7 is correct. For nonnegativex,y∈ F, Sterbenz’s theorem
[4] says that

y
2
≤ x≤ 2y=⇒ fl(x−y) = x−y.

Thus, the contraposition of Sterbenz’s theorem for nonnegativex5 andx6 means

x5 < x6/2 or x5 > 2x6

which gives

|x7| ≥
1
2

max(|x5|, |x6|). (3.25)

For negativex5 andx6 we can prove (3.25) similarly. Ifx5 andx6 have opposite signs,
then (3.25) is trivially satisfied. An upper bound of the right term in (3.24) is

fl(θx8)+(1.5+3u)uS+u ·ufp(fl(x5−x6))

≤ fl(4u ·2max(|x5|, |x6|))+(1.5+3u)uS+u ·ufp(fl(x5−x6)).
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Therefore, from (3.22), (3.23) and (3.25), it follows that

|x7|− (fl(θx8)+(1.5+3u)uS)−u ·ufp(fl(x5−x6))

≥ 1
2

max(|x5|, |x6|)−fl(4u ·2max(|x5|, |x6|))− (1.5+3u)uS−2umax(|x5|, |x6|)

>
1
2

max(|x5|, |x6|)−10umax(|x5|, |x6|)−
1
2

uS−2uS

≥
(

1
2
−10u

)
1
2

uN −2.5uS> 0.

□
The following floating-point filter is proposed in [3]:

|x7|> fl(8u(((|ax|+ |cx|)(|by|+ |cy|)+uN)+(|bx|+ |cx|)(|ay|+ |cy|)+uN)).

The idea of addinguN to a factor of a floating-point multiplication is nice because
in this way the subnormal constant(1.5+3u)uS appearing in (3.16) can be avoided
which would cause slow performance on the CPU in the average case. We take up
this idea and propose the following floating-point filter:

Theorem 3.3 If
|x7|> fl(θ(x8+uN)) (3.26)

is satisfied, then the sign of x7 is the same as that of t7.

Proof.
According to Theorem 3.2, we may assume that (3.15) holds true. First, we men-

tion a basic property of floating-point numbers, see [11]. Forx ∈ R let succ(x) :=
min{ f ∈ F | x < f} denote the floating-point successor ofx. Then, for nonnegative
c∈ F with finite succ(c) the following holds true:

If c< u−1uS= 2uN, thensucc(c) = c+uS. (3.27)

If 2uN ≤ c, thensucc(c) = c+2u ·ufp(c). (3.28)

We distinguish the following three cases:

(a) x8 ≥ u−1uN −uN

(b) u−1uN −uN > x8 ≥ 1
2u−1uN −uN

(c) x8 <
1
2u−1uN −uN

In case (a),fl(θ(x8+uN))> 2uN, (3.28) and assumption (3.26) imply

|x7| ≥ succ(fl(θ(x8+uN))) = fl(θ(x8+uN))+2u ·ufp(fl(θ(x8+uN)))

≥ fl(θ(x8+uN))+4u ·uN ≥ fl(θx8)+2uS> fl(θx8)+(1.5+3u)uS.

The assertion follows from Theorem 3.1.
For case (b), from (3.4)

x1x2 = fl(x1x2)+δ3+η3, |δ3| ≤ u ·ufp(x1x2), |η3| ≤
1
2

uS, δ3η3 = 0,

x3x4 = fl(x3x4)+δ4+η4, |δ4| ≤ u ·ufp(x3x4), |η4| ≤
1
2

uS, δ4η4 = 0.
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By assumption

(2+u)(ufp(x1x2)+ufp(x3x4))+us ≥ |x1x2|+ |x3x4|+ |δ3|+ |δ4|+ |η3|+ |η4|
≥ |x5|+ |x6| ≥ x8−u ·ufp(x8)

>
1
2

u−1uN −uN −u(u−1uN)

= (
1
2

u−1−2)uN

which implies

ufp(x1x2)+ufp(x3x4)>
(1

2u−1−2)uN −uS

2+u
≫ 2uN.

Thus,

u ·ufp(x1x2)> u ·uN =
1
2

uS or u ·ufp(x3x4)> u ·uN =
1
2

uS.

Now, according to the conditions imposed onS in Lemma 3.1, we may assume with-
out loss of generality thatη5 = 0 orη6 = 0 in the proof of Theorem 3.1 which yields
the modified constant

Ũ1 := (1+u)−1θx8+
1
2

uS+
3
2

u ·uS.

Furthermore,

u ·ufp(fl(θx8))≥ u ·ufp(fl(θ(1
2

u−1uN −uN)))≥ u ·uN =
1
2

uS

implies θx8 ≤ (1+ u)fl(θx8). Repeating the final estimation ofU1 in the proof of
Theorem 3.1 gives

Ũ1 = (1+u)−1θx8+
1
2

uS+
3
2

u ·uS

≤ (1+u)−1(1+u)fl(θx8)+
1
2

uS+
3
2

u ·uS= fl(θx8)+
1
2

uS+
3
2

u ·uS.

By assumption (3.26),

|x7| ≥ fl(θ(x8+uN))+uS≥ fl(θx8)+uS

> fl(θx8)+
1
2

uS+
3
2

u ·uS≥ Ũ1

which implies the assertion according to the proof of Theorem 3.1.
In case (c) we have

ufp(x8+uN)≤
1
4

u−1uN, ufp(θx8)≤ ufp(θ(x8+uN))≤ uN.
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Thus,

fl(x8+uN)≥ x8+uN −u ·ufp(x8+uN)≥ x8+
3
4

uN,

θx8 ≥ fl(θx8)−max(u ·ufp(θx8),
1
2

uS)≥ fl(θx8)−u ·uN,

fl(θ(x8+uN)) = fl(θfl(x8+uN))

≥ θfl(x8+uN)−max(u ·ufp(θfl(x8+uN)),
1
2

uS)

≥ θ(x8+
3
4

uN)−u ·uN = θx8+
3θ −4

4
u ·uN

≥ fl(θx8)+
3θ −8

4
u ·uN > fl(θx8).

Therefore,

fl(θ(x8+uN))−fl(θx8)≥ uS

and by assumption (3.26) also

|x7|−fl(θ(x8+uN))≥ uS

is obtained from (3.27). Both inequalities imply

|x7|−fl(θx8)− (1.5+3u)uS≥ |x7|−fl(θ(x8+uN))+uS− (1.5+3u)uS

≥ 2uS− (1.5+3u)uS> 0.

Again, the assertion follows from Theorem 3.1. □

Theorem 3.4 If

|x7|= fl(|x5−x6|)> fl(θ(|x5+x6|+uN)) (3.29)

is satisfied, then

|x7|= fl(|x5−x6|)> fl(θ(|x5|+ |x6|+uN)). (3.30)

Proof. We distinguish the following four cases of the signs ofx5 andx6:

(a)x5=x6=0.
(b) One ofx5 andx6 is zero.
(c) The signs ofx5 andx6 are non-zero and the same.
(d) The signs ofx5 andx6 are non-zero and opposite.

For (a), (3.29) is false. For (b) and (c),|x5+x6|= |x5|+ |x6|. For (d),

fl(|x5−x6|) = fl(|x5|+ |x6|).
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x ◦ y z x ◦ y z x ◦ y z
Inf + Inf Inf -Inf + -Inf -Inf Inf + -Inf NaN
Inf - Inf NaN -Inf - -Inf NaN Inf - -Inf Inf
Inf * Inf Inf -Inf * -Inf Inf Inf * -Inf -Inf
Inf + 0 Inf Inf + p Inf Inf + -p Inf
Inf - 0 Inf Inf - p Inf Inf - -p Inf
Inf * 0 NaN Inf * p Inf Inf * - p -Inf

Table 3.1 Floating-point exceptions (z= fl(x◦y), ◦ ∈ {+,−,∗}). p is a positive floating-point number.

From assumption (3.29),|x7| ≥ 2uS sincefl(θ(|x5+ x6|+uN)) ≥ uS. If |x7| < 8uS,
thenfl(θ(|x5|+ |x6|+uN)) = uS and (3.30) is satisfied. If|x7| ≥ 8uS= 16u ·uN, then

|x7|−fl(θ(|x5|+ |x6|+uN)) ≥ |x7|−fl(3u(|x7|+uN))

≥ |x7|−3u(1+u)2(|x7|+uN)−
1
2

uS

> |x7|−4u · 2|x7|
16u

− 1
2

uS

=
1
2
|x7|−

1
2

uS> 0.

This completes the proof. □

Theorem 3.5 Assume that overflow occurs in (3.29). If (3.29) is valid4, then the
sign of x7 is the same as that of t7. Therefore, the filter (3.29) never fails, i.e., there
is no case where the sign of the computed result is wrong but the filter guarantees its
correctness.

Proof.
First, we introduce the IEEE 754 rules for overflow arithmetic. Forx,y∈ F with

{x,y}∩{±Inf} ̸= /0, the resultsz := x◦y for ◦ ∈ {+,−,∗} are shown in Table 3.1. In
addition, the standard yieldsfl(|NaN|) = NaN, fl(|Inf|) = Inf andfl(|− Inf|) = Inf.
If overflow occurs at least in one ofx1,x2,x3,x4,x5,x6, then|x7| becomes Inf or NaN
and the error bound on the right hand-side in (3.29) becomes Inf or NaN. By the
definition of the IEEE 754 standard, all of the following comparisons are false:

Inf > Inf, NaN> Inf, Inf > NaN, NaN> NaN.

Therefore, we do not need to consider these cases. If overflow occurs in the evaluation
of x8, then (3.29) is invalid sincefl(θ(|x5+x6|+uN)) = Inf. Therefore, we only need
to consider the case that overflow occurs in the evaluation ofx7 and does not occur in
the evaluation ofx1, . . . ,x6 andfl(x5+x6). This is only possible if the signs ofx5 and
x6 are opposite, whereas clearly the sign ofx7 = fl(x5−x6) ∈ {±Inf} equals the sign
of t7 = t5− t6. □

By Theorems 3.1, 3.2, 3.3, 3.4 and 3.5 we conclude the following: if

|x7|> fl(θ(|x5+x6|+uN)) (3.31)
4 Here ”valid” means that condition (3.29) evaluated according to IEEE 754 rules yields the result

”true”.
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Fig. 3.1 Flow of our algorithm.

is satisfied, then the sign ofx7 is correct.
We write the algorithm for (3.31) as follows:

Algorithm 3 Let A= (ax,ay), B = (bx,by) and C= (cx,cy) be three points in the
two-dimensional space with floating-point coordinates. Suppose that an oriented line
passes from A to B. The following algorithm calculates a sign of the determinant (1.1)
by floating-point arithmetic. If the result is positive (negative), the point C is left
(right) of the oriented line from A to B.

functiondet= Ofilter(ax,ay,bx,by,cx,cy)
l = (ax−cx)∗ (by−cy);
r = (bx−cx)∗ (ay−cy);
det= l − r;
errbound= θ ∗ (|l + r|+uN);
if |det|> errbound
return det;

end

% fall back to a more precise, slower method
end

Figure 3 shows the flow diagram of our algorithm. We discuss advantages and
disadvantages of our algorithm. Our filter contains only one branch, so that it is very
simple. The number of taking absolute values is also less than that of Algorithms
1 and 2. However, Algorithm 3 does not detect points on the line, for example, if
A = (1,1), B = (2,1), C = (3,1), then our filters cannot guarantee the result but
Algorithms 1 and 2 can verify the correctness.

We will now show benchmarks for each filter described in Sections 2 and 3. These
filters are embedded in the incremental algorithm for a convex hull. We compare
computing times for

– M1: Incremental Algorithm with pure floating-point arithmetic.
– M2: Incremental Algorithm with Filter-Algorithm 1
– M3: Incremental Algorithm with Filter-Algorithm 2
– M4: Incremental Algorithm with Filter-Algorithm 3



Simple Floating-Point Filters for the Two-Dimensional Orientation Problem 17

Table 3.2 Computing time for the incremental algorithm.

Algorithm Intel C Visual C
M1 7.37 (1.00) 7.76 (1.00)
M2 9.58 (1.30) 13.6 (1.75)
M3 13.4 (1.82) 17.7 (2.28)
M4 7.74 (1.05) 7.97 (1.03)

All codes are implemented in C language. For M1, the code is compiled by Intel C++
Compiler version 13 (/O3 /QxAVX /QaxAVX) and Visual C++ Compiler 2010 (/Ox).
For others, the codes are compiled by Intel C++ Compiler (/O3 /QxAVX /QaxAVX
/fp:precise ) and Visual C++ Compiler 2010 (/Ox /fp:precise) via MATLAB Exe-
cutable (Mex files). If we do not attach /fp:precise as a compiler option, then the order
of computations may change. This change is not allowed for the a priori error estima-
tion. We generaten-pointspi = (xi , yi), wherexi ,yi , i = 1, . . . ,n are pseudo-random
numbers drawn from the standard normal distribution by using MATLAB built-in
functionrandn. All 2d orientation problems are solved by each floating-point filter,
namely no robust computation is called, so that we can compare the efficiency of
floating-point filters. Computing times forn= 108 are displayed in Table 3.2. The ra-
tio of computing times (M2, M3, M4) / M1 is also shown in parenthesis. From Table
3.2, it is confirmed that our filter works faster than other filters.

Remark 3.2One may think that once max
1≤i≤n

(|xi |), min
1≤i≤n

(|xi |), max
1≤i≤n

(|yi |) and min
1≤i≤n

(|yi |)
are obtained, then overflow and underflow might be predictable. But the number of
choices for three points fromn points isO(n3). Thus, even if overflow would occur
in the floating-point evaluation for the orientation problem for some few triples of
points, we will in general not detect these exceptional cases in algorithms in compu-
tational geometry, for example, algorithms for convex hull, since the total number of
solving orientation problems in common algorithms for the convex hull is less than
O(n2).

4 Fully-Static Filter

Definepi = (xi ,yi) ∈ F2, i = 1..n. Applications like the convex hull problem require
to compute

fl((xi −xk)(y j −yk)− (yi −yk)(x j −xk))

wherei, j andk are pairwise distinct. A static filter gives an error bound for all such
triples(i, j,k). Let mx = max

1≤i≤n
|xi | andmy = max

1≤i≤n
|yi |. By using a technique from [3],

we derive

fl(θ(|(xi −xk)(y j −yk)− (yi −yk)(x j −xk)|+uN))

≤ fl(θ((|xi |+ |xk|)(|y j |+ |yk|)+(|yi |+ |yk|)(|x j |+ |xk|)+uN))

≤ fl(θ(8mxmy+uN)). (4.1)
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Here, we assume that no underflow occurs in (4.1)5. Then, the bound (4.1) is inde-
pendent fromi, j andk. However, a static error bound is evaluated in advance of
main computations at once in applications like the convex hull. We derive a smaller
error bound than (4.1). Assumefl(mxmy) ≥ uN. Let m′

x = max
1≤i≤n

xi , m′
y = max

1≤i≤n
yi ,

n′x = min
1≤i≤n

xi andn′y = min
1≤i≤n

yi . From (3.3), for 1≤ i ≤ 4,

ti = xi + εi , |ε1|, |ε4| ≤ u ·ufp(m′
x−n′x), |ε2|, |ε3| ≤ u ·ufp(m′

y−n′y).

From (3.4) without underflow,

x1x2 = x5+ε5, |ε5| ≤ u ·ufp(fl(x1x2)), x3x4 = x6+ε6, |ε6| ≤ u ·ufp(fl(x3x4)).

From assumption (3.15),

t7 = t5− t6 = t1t2− t3t4 = (x1+ ε1)(x2+ ε2)− (x3+ ε3)(x4+ ε4)

= x5+x1ε2+x2ε1+ ε1ε2+ ε5− (x6+x3ε4+x4ε3+ ε3ε4+ ε6)

= x7+x1ε2+x2ε1+ ε1ε2+ ε5− (x3ε4+x4ε3+ ε3ε4+ ε6).

Let α = fl(m′
x−n′x) andβ = fl(m′

y−n′y). We have

|x7− t7| ≤ |x1||ε2|+ |x2||ε1|+ |ε1||ε2|+ |ε5|+ |x3||ε4|+ |x4||ε3|+ |ε3||ε4|+ |ε6|
≤ 2αu ·ufp(m′

y−n′y)+2βu ·ufp(m′
x−n′x)

+2u ·ufp(fl(αβ ))+2u2ufp(m′
x−n′x)ufp(m

′
y−n′y)

= fl(2αu ·ufp(β ))+fl(2βu ·ufp(α))+fl(2u ·ufp(fl(αβ ))
+fl(2u2ufp(α)ufp(β )) =: T1.

Define

T2 := fl(2αu ·ufp(β )+2βu ·ufp(α)+2u ·ufp(αβ )+2u2ufp(α)ufp(β )).

For p∈ Fn with n≤ u−1, Rump [10] derived

|
n

∑
i=1

pi −fl(
n

∑
i=1

pi)| ≤ fl((n−1)u ·ufp(
n

∑
i=1

|pi |)). (4.2)

By (4.2) withn= 4, T1 is bounded by

T1 ≤ T2+3u ·ufp(T2)< succ(fl(T2+3u ·ufp(T2))). (4.3)

We now compare the error bounds (4.1) and (4.3). First, we generatex= randn(10000,1)
andy= randn(10000,1) a hundred times. Tables 4.1 and 4.2 show the minimum, the
mean, and the maximum ratio (4.3) / (4.1). Next, we generatex= rand(10000,1) and
y= rand(10000,1). Tables 4.1 and 4.2 show the minimum, the mean, and the maxi-
mum ratio (4.3) / (4.1). According to Tables 4.1 and 4.2, our filter produces the better
error bounds.

5 If this is not true, a suitable scaling by multiplying a large number with a power of two for all floating-
point coordinates should be applied.
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minimum mean maximum
0.4537 0.5766 0.9180

Table 4.1 Ratio of the error bound forx= randn(10000,1) andy= randn(10000,1)

minimum mean maximum
0.1250 0.1250 0.1251

Table 4.2 Ratio of the error bound forx= rand(10000,1) andy= rand(10000,1)

5 Conclusion

We have developed new floating-point filters for the two-dimensional orientation
problem. Some of the previously available algorithms for this purpose could either
not handle floating-point exceptions like overflow or underflow, or they required ad-
ditional branches for treating them at the expense of slower performance. In contrast,
our algorithms work uniformly without extra branching also for underflow and over-
flow situations, and they are highly performant. As a benchmark we implemented
our floating-point filters and previously available ones for the convex hull problem.
It turned out that our filters have a better performance than the other ones without
recognizable loss of quality.
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